Preclinical Testing of Flavors in E-vapor Products, Part 3:
In Vitro Cytotoxicity and Genotoxicity of Representative Flavor Mixtures

Utkarsh Doshi

Tobacco Science Research Conference
September 17, 2019
Overview of Session

- Part 1: Selection of Representative Flavor Mixtures Using a Structural Grouping Approach (Kim Ehman)

- Part 2: Preparation and Stability Characterization of Representative Flavor Mixtures (Cameron Smith)

- Part 3: *In Vitro* Cytotoxicity and Genotoxicity of Representative Flavor Mixtures (Utkarsh Doshi)

- Part 4: Flavor Transfer from the Liquid to the Aerosol for Inhalation Exposure (Jingjie Zhang)
Preclinical Testing of Flavors in E-vapor Products: Overview

Part 1
In-vitro Exposure

Part 2
E-Vapor Industry 5000+ Flavors

Part 3
PG VG Nicotine 38 Flavors

Part 4
Selection Process
Preclinical Application

Preparation, Characterization & Stability

E-Vapor Industry 5000+ Flavors
Background

- Flavor compounds for oral consumption fall within “generally recognized as safe (GRAS)” category

- Limited safety data exists for inhalation route of exposure

- Many flavor compounds in e-vapor products are commonly used as mixtures which makes their hazard characterization resource and time-demanding

- Alternative approach (part 1):
 - Evaluate structural similarities to develop representative flavor mixtures for preclinical toxicity testing

- Representative flavor mixtures were tested for in vitro cytotoxicity and genotoxicity
Test Articles:
- Carrier (PG:VG (80:20) + 2% Nicotine)
- Test Formulation (18.6% flavor)
- Test Formulation (18.6% flavor) + 2% Nicotine

OECD Tests:
- Ames Mutagenicity
- Micronucleus
- Neutral Red Uptake Cytotoxicity
Mutagenicity Assessment

- Detects compounds ability to cause mutations (point or frame-shift).
- Carrier & test formulations ±nicotine were tested in 5 strains of *Salmonella typhimurium* TA98, TA100, TA102, TA1535 & TA1537 in absence and presence of metabolic activation (Aroclor induced rat liver S9).

<table>
<thead>
<tr>
<th>Test Articles</th>
<th>Mutagenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier (PG/VG/Nicotine)</td>
<td>Negative</td>
</tr>
<tr>
<td>Test Formulation</td>
<td>Negative</td>
</tr>
<tr>
<td>Test Formulation + Nicotine</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Genotoxicity Assessment

- TK6, human lymphoblast cell line.
- Three treatment conditions: Short term (±S9), long term (-S9).

![Cytotoxicity in TK6 cells](image)

<table>
<thead>
<tr>
<th>Concentration of E-liquid (%v/v)</th>
<th>% Viability (Relative Population Doubling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>100</td>
</tr>
<tr>
<td>0.50</td>
<td>80</td>
</tr>
<tr>
<td>1.00</td>
<td>60</td>
</tr>
<tr>
<td>1.50</td>
<td>40</td>
</tr>
<tr>
<td>2.00</td>
<td>20</td>
</tr>
</tbody>
</table>

- Cytotoxicity in TK6 cells PG/VG/Nic
- Cytotoxicity in TK6 cells Test Formulation
- Cytotoxicity in TK6 cells Test Formulation + Nic

![Cytotoxicity plots](image)
Genotoxicity Assessment (cont)

<table>
<thead>
<tr>
<th>Test Articles</th>
<th>Genotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier (PG/VG/Nicotine)</td>
<td>Negative</td>
</tr>
<tr>
<td>Test Formulation</td>
<td>Equivocal</td>
</tr>
<tr>
<td>Test Formulation + Nicotine</td>
<td>Negative</td>
</tr>
</tbody>
</table>

In Vitro Micronucleus Assay (Test Formulation-Nicotine/4h+S9)

- **% Micronuclei**
 - Upper limit of vehicle historical control

- **Cytotoxicity (%)**
 - DMSO
 - 0.04
 - 0.08
 - 0.14

* Criteria For Positive Genotoxicity Call

All 3 criteria have to be met:
- Statistical Significance (p≤0.05, Fisher exact)
- Outside of vehicle historical control
- Significant for trend

* p≤0.05, Fisher exact test
Cytotoxicity Assessment

- Murine fibroblast cell line (BALB/c 3T3 cells, clone 31)
- 48 hr treatment
Identifying Drivers of Cytotoxicity

- Cytotoxicity was a common trend observed in all 3 assays.

- To understand the drivers of cytotoxicity, 38 flavor ingredients were divided into sub-group mixtures (called pre-blends) based on their solubility and chemical reactivity (part 2) and tested using NRU assay.
Cytotoxicity Assessment of Pre-blends

- Pre-blends IA, IB and II were the major contributors to toxicity.
- Examples of flavors reported to be in vitro cytotoxic/irritant:
 - IA (isopulegol)
 - II (furaneol, ethyl maltol)
Conclusions

- Representative flavor mixtures did not show mutagenicity and genotoxicity in the in vitro assays.

- Representative flavor mixtures showed cytotoxicity in the in vitro assay, however the cytotoxicity was driven by few selected flavors or flavor groups.

- Use of read across approach in combination with systematic toxicity evaluation (deconstructing mixtures into subsets of flavors) can reduce the list of compounds for thorough toxicological evaluation.
Acknowledgements

Altria Client Services, Richmond, Virginia, USA

Jingjie Zhang
Ashutosh Kumar
K. Monica Lee

Bioreliance (Millipore Sigma), Rockville, Maryland
USA